Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Orv Hetil ; 161(20): 807-812, 2020 05 01.
Article in Hungarian | MEDLINE | ID: covidwho-2224522

ABSTRACT

Introduction: At the end of March, 2020, rapid tests detecting the presence of antiviral IgM and IgG antibodies against SARS-CoV-2 virus were introduced in Hungary for the identification of SARS-CoV-2 infection (COVID-19 disease). Aim: We evaluated two rapid tests (Anhui and Clungene) in comparison with those of real-time PCR tests considered as the gold standard in the detection of infection. Method: Between 16, March and 14, April, 2020, we performed rapid IgM and IgG detecting tests without PCR; PCR without rapid tests; and PCR WITH rapid tests in 4140, 3210 and 1654 patients, respectively. (Out of these 1654 patients, Anhui and Clungene tests were used for testing in 625 and 1029 patients, respectively.) Patients were considered as positive in PCR and rapid tests when PCR positivity and IgM or IgG positivity occurred at any time, respectively. (Note: Clungene test is also marketed as 'Lungene'.) Results: The prevalence of PCR positivity in 4864 patients tested with PCR was 6.3%. The sensitivity and specificity of Anhui and Clungene tests were 33.3% and 72.85%, and 35.48% and 85.02%, respectively. At 6% PCR positivity, the positive and negative predictive values of Anhui and Clungene were 7.28%, 94.48%, 13.13%, and 95.38%, respectively. Conclusion: The low positive predictive values indicate that Anhui and Clungene rapid tests detecting the presence of anti-IgM and anti-IgG against SARS-CoV-2 virus infection are not suitable for screening SARS-CoV-2 vírus infection in the general population. These results strongly support that Anhui and Clungene rapid tests detecting IgM and IgG antibodies against SARS-CoV-2 virus should not be used in the differential diagnosis of infection. Orv Hetil. 2020; 161(20): 807-812.


Subject(s)
Antibodies, Viral , Coronavirus Infections/diagnosis , Immunoassay/methods , Pneumonia, Viral/diagnosis , Antibodies, Viral/analysis , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Humans , Hungary , Immunoglobulin G/analysis , Immunoglobulin M/analysis , Pandemics , Predictive Value of Tests , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity
2.
Genes (Basel) ; 12(10)2021 10 04.
Article in English | MEDLINE | ID: covidwho-1512224

ABSTRACT

Regular exercise can upgrade the efficiency of the immune system and beneficially alter the composition of the gastro-intestinal microbiome. We tested the hypothesis that active athletes have a more diverse microbiome than sedentary subjects, which could provide better protection against COVID-19 during infection. Twenty active competing athletes (CA) (16 male and 4 females of the national first and second leagues), aged 24.15 ± 4.7 years, and 20 sedentary subjects (SED) (15 male and 5 females), aged 27.75 ± 7.5 years, who had been diagnosed as positive for COVID-19 by a PCR test, served as subjects for the study. Fecal samples collected five to eight days after diagnosis and three weeks after a negative COVID-19 PCR test were used for microbiome analysis. Except for two individuals, all subjects reported very mild and/or mild symptoms of COVID-19 and stayed at home under quarantine. Significant differences were not found in the bacterial flora of trained and untrained subjects. On the other hand, during COVID-19 infection, at the phylum level, the relative abundance of Bacteroidetes was elevated during COVID-19 compared to the level measured three weeks after a negative PCR test (p < 0.05) when all subjects were included in the statistical analysis. Since it is known that Bacteroidetes can suppress toll-like receptor 4 and ACE2-dependent signaling, thus enhancing resistance against pro-inflammatory cytokines, it is suggested that Bacteroidetes provide protection against severe COVID-19 infection. There is no difference in the microbiome bacterial flora of trained and untrained subjects during and after a mild level of COVID-19 infection.


Subject(s)
Athletes , Bacteroidetes/growth & development , COVID-19/microbiology , Gastrointestinal Microbiome , Sedentary Behavior , Adult , Bacteroidetes/classification , COVID-19/prevention & control , Female , Humans , Male , SARS-CoV-2
3.
Molecules ; 26(17)2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1403854

ABSTRACT

This paper presents the results of the first part of testing a novel electrospun fiber mat based on a unique macromolecule: polyisobutylene (PIB). A PIB-based compound containing zinc oxide (ZnO) was electrospun into self-supporting mats of 203.75 and 295.5 g/m2 that were investigated using a variety of techniques. The results show that the hydrophobic mats are not cytotoxic, resist fibroblast cell adhesion and biofilm formation and are comfortable and easy to breathe through for use as a mask. The mats show great promise for personal protective equipment and other applications.


Subject(s)
Polyenes/chemistry , Polymers/chemistry , Biofilms/drug effects , Cell Adhesion/drug effects , Cells, Cultured , Fibroblasts/drug effects , Humans , Materials Testing/methods , Nanofibers/chemistry , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL